Real-Time Detection for Scattering Scanning Near-Field Optical Microscopy
نویسندگان
چکیده
Date The final copy of this thesis has been examined by the signatories, and we find that both the content and the form meet acceptable presentation standards of scholarly work in the above mentioned discipline. Thesis directed by Professor Markus Raschke Scattering scanning near-field optical microscopy (s-SNOM) is a powerful technique for measuring spectroscopic properties of materials with spatial resolution previously unobtainable due to the diffraction limit. s-SNOM combines scanning probe microscopy (SPM) with spectroscopy to provide sub-diffraction limited spatial resolution information about optical and related properties of matter. Discriminating the weak elastic s-SNOM signal from various undesirable background signals is critical to the success of s-SNOM as a measurement technique. Traditionally this discrimination is achieved through lock-in detection, in which the s-SNOM signal is restricted to, and measured at harmonics of an atomic force microscope tip oscillation frequency Ω. However, this detection technique neglects information at all undetected harmonics. To overcome this loss of information, for my honors thesis, I developed a new s-SNOM detection scheme based upon the real-time acquisition of the s-SNOM signal to ensure no information is lost. With this new detection scheme I have been able to simulate gated detection elastic s-SNOM –a measurement which has not yet been realized experimentally– and determine that it provides no more than background-ridden information readily obtainable with lock-in detection. I have also been able to generate, for the first time, an experimental reconstruction of the distance dependence of the tip-sample interaction for elastic s-SNOM measurements and compare it to theoretical models. Acknowledgements I would like to thank Prof. Markus Raschke for providing me with many outstanding opportunities to begin to form my identity as a researcher. These opportunities have included everything from learning the basics of using lab equipment to traveling to Germany for a collaborative project. The skill and experience I've gained under his guidance have prepared me very well for what lies ahead in my career as a researcher. I would like to particularly thank Sam Berweger for mentoring me in and out of the lab. Following his example has helped me to develop an intuition for experimental physics I never could have learned in a classroom. His guidance on this project has helped me make the transition from fumbling around in the lab figuring out how everything works to pulling all of my experience together to produce results. It has been a great pleasure working …
منابع مشابه
An overview of scanning near-field optical microscopy in characterization of nano-materials
Scanning Near-Field Optical Microscopy (SNOM) is a member of scanning probe microscopes (SPMs) family which enables nanostructure investigation of the surfaces on a wide range of materials. In fact, SNOM combines the SPM technology to the optical microscopy and in this way provide a powerful tool to study nano-structures with very high spatial resolution. In this paper, a qualified overview of ...
متن کاملAn overview of scanning near-field optical microscopy in characterization of nano-materials
Scanning Near-Field Optical Microscopy (SNOM) is a member of scanning probe microscopes (SPMs) family which enables nanostructure investigation of the surfaces on a wide range of materials. In fact, SNOM combines the SPM technology to the optical microscopy and in this way provide a powerful tool to study nano-structures with very high spatial resolution. In this paper, a qualified overview of ...
متن کاملHeterodyne apertureless near-field scanning optical microscopy on periodic gold nanowells.
Heterodyne detection for apertureless near-field scanning optical microscopy was used to study periodic gold nanowell arrays. Optical near-field amplitude and phase signals were obtained simultaneously with the topography of the gold nanowells and with different polarizations. Theoretical calculations of the near-fields were consistent with the experiments; in particular, the calculated amplitu...
متن کاملPlasmonic Probe With Circular Nano-Moat for far-Field Free Nanofocusing
In this work, a metallic probe with a sharp tip and two half-circular nanostructures on its base is introduced and investigated. The proposed design aims at improving the detection performance of a probe for scattering scanning near-field optical microscopy in terms of enhanced signal-to-noise ratio. Under the premise of processing feasibility, the structure of the probe is designed and optimiz...
متن کاملResolving near-field from high order signals of scattering near-field scanning optical microscopy.
The ability of using scattering-type near-field scanning optical microscopy (s-NSOM) to characterize amplitude and phase of optical near fields was investigated. We employ numerical simulations to compute signals scattered by the tip, using a bowtie nano-aperture as the example, and compare with the data obtained from s-NSOM measurements. Through demodulation of higher order harmonic signals, w...
متن کاملScattering-type scanning near-field optical microscopy with reconstruction of vertical interaction.
Scattering-type scanning near-field optical microscopy provides access to super-resolution spectroscopic imaging of the surfaces of a variety of materials and nanostructures. In addition to chemical identification, it enables observations of nano-optical phenomena, such as mid-infrared plasmons in graphene and phonon polaritons in boron nitride. Despite the high lateral spatial resolution, scat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015